Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
JHEP Rep ; 6(4): 101039, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38524669

RESUMEN

Background & Aims: The aim of this study was to investigate gut microbiome (GM) dynamics in relation to carbapenem-resistant Enterobacterales (CRE) colonization, CRE infection, and non-CRE infection development within 2 months after liver transplant (LT). Methods: A single-center, prospective study was performed in patients undergoing LT from November 2018 to January 2020. The GM was profiled through 16S rRNA amplicon sequencing of a rectal swab taken on the day of transplantation, and fecal samples were collected weekly until 1 month after LT. A subset of samples was subjected to shotgun metagenomics, including resistome dynamics. The primary endpoint was to explore changes in the GM in the following groups: (1) CRE carriers developing CRE infection (CRE_I); (2) CRE carriers not developing infection (CRE_UI); (3) non-CRE carriers developing microbial infection (INF); and (4) non-CRE carriers not developing infection (NEG). Results: Overall, 97 patients were enrolled, and 91 provided fecal samples. Of these, five, nine, 22, and 55 patients were classified as CRE_I, CRE_UI, INF, and NEG, respectively. CRE_I patients showed an immediate and sustained post-LT decrease in alpha diversity, with depletion of the GM structure and gradual over-representation of Klebsiella and Enterococcus. The proportions of Klebsiella were significantly higher in CRE_I patients than in NEG patients even before LT, serving as an early marker of subsequent CRE infection. CRE_UI patients had a more stable and diverse GM, whose compositional dynamics tended to overlap with those of NEG patients. Conclusions: GM profiling before LT could improve patient stratification and risk prediction and guide early GM-based intervention strategies to reduce infectious complications and improve overall prognosis. Impact and implications: Little is known about the temporal dynamics of gut microbiome (GM) in liver transplant recipients associated with carbapenem-resistant Enterobacterales (CRE) colonization and infection. The GM structure and functionality of patients colonized with CRE and developing infection appeared to be distinct compared with CRE carriers without infection or patients with other microbial infection or no infection and CRE colonization. Higher proportions of antimicrobial-resistant pathogens and poor representation of bacteria and metabolic pathways capable of promoting overall host health were observed in CRE carriers who developed infection, even before liver transplant. Therefore, pretransplant GM profiling could improve patient stratification and risk prediction and guide early GM-based intervention strategies to reduce infectious complications and improve overall prognosis.

2.
iScience ; 27(3): 109211, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38433907

RESUMEN

The human gut microbiome is losing biodiversity, due to the "microbiome modernization process" that occurs with urbanization. To keep track of it, here we applied shotgun metagenomics to the gut microbiome of the Baka, a group of forager-horticulturalists from Cameroon, who combine hunting and gathering with growing a few crops and working for neighboring Bantu-speaking farmers. We analyzed the gut microbiome of individuals with different access to and use of wild plant and processed foods, to explore the variation of their gut microbiome along the cline from hunter-gatherer to agricultural subsistence patterns. We found that 26 species-level genome bins from our cohort were pivotal for the degradation of the wild plant food substrates. These microbes include Old Friend species and are encoded for genes that are no longer present in industrialized gut microbiome. Our results highlight the potential relevance of these genes to human biology and health, in relation to lifestyle.

3.
Microbiome Res Rep ; 2(4): 32, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38045924

RESUMEN

The microbiota-gut-brain axis refers to the intricate bidirectional communication between commensal microorganisms residing in the digestive tract and the central nervous system, along neuroendocrine, metabolic, immune, and inflammatory pathways. This axis has been suggested to play a role in several neurological disorders, such as Parkinson's disease, Alzheimer's disease, multiple sclerosis, and epilepsy, paving the way for microbiome-based intervention strategies for the mitigation and treatment of symptoms. Epilepsy is a multifaceted neurological condition affecting more than 50 million individuals worldwide, 30% of whom do not respond to conventional pharmacological therapies. Among the first-hand microbiota modulation strategies, nutritional interventions represent an easily applicable option in both clinical and home settings. In this narrative review, we summarize the mechanisms underlying the microbiota-gut-brain axis involvement in epilepsy, discuss the impact of antiepileptic drugs on the gut microbiome, and then the impact of a particular dietary pattern, the ketogenic diet, on the microbiota-gut-brain axis in epileptic patients. The investigation of the microbiota response to non-pharmacological therapies is an ever-expanding field with the potential to allow the design of increasingly accessible and successful intervention strategies.

4.
Microbiome Res Rep ; 2(4): 25, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38058764

RESUMEN

Microbiome networking analysis has emerged as a powerful tool for studying the complex interactions among microorganisms in various ecological niches, including the human body and several environments. This analysis has been used extensively in both human and environmental studies, revealing key taxa and functional units peculiar to the ecosystem considered. In particular, it has been mainly used to investigate the effects of environmental stressors, such as pollution, climate change or therapies, on host-associated microbial communities and ecosystem function. In this review, we discuss the latest advances in microbiome networking analysis, including methods for constructing and analyzing microbiome networks, and provide a case study on how to use these tools. These analyses typically involve constructing a network that represents interactions among microbial taxa or functional units, such as genes or metabolic pathways. Such networks can be based on a variety of data sources, including 16S rRNA sequencing, metagenomic sequencing, and metabolomics data. Once constructed, these networks can be analyzed to identify key nodes or modules important for the stability and function of the microbiome. By providing insights into essential ecological features of microbial communities, microbiome networking analysis has the potential to transform our understanding of the microbial world and its impact on human health and the environment.

5.
Microbiome Res Rep ; 2(3): 16, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38046820

RESUMEN

Although research on the role of the gut microbiota (GM) in human health has sharply increased in recent years, what a "healthy" gut microbiota is and how it responds to major stressors is still difficult to establish. In particular, anticancer chemotherapy is known to have a drastic impact on the microbiota structure, potentially hampering its recovery with serious long-term consequences for patients' health. However, the distinguishing features of gut microbiota recovery and non-recovery processes are not yet known. In this narrative review, we first investigated how gut microbiota layouts are affected by anticancer chemotherapy and identified potential gut microbial recovery signatures. Then, we discussed microbiome-based intervention strategies aimed at promoting resilience, i.e., the rapid and complete recovery of a healthy gut microbial network associated with a better prognosis after such high-impact pharmacological treatments.

6.
Blood ; 142(16): 1387-1398, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37856089

RESUMEN

The correlation existing between gut microbiota diversity and survival after allogeneic hematopoietic stem cell transplantation (allo-HSCT) has so far been studied in adults. Pediatric studies question whether this association applies to children as well. Stool samples from a multicenter cohort of 90 pediatric allo-HSCT recipients were analyzed using 16S ribosomal RNA amplicon sequencing to profile the gut microbiota and estimate diversity with the Shannon index. A global-to-local networking approach was used to characterize the ecological structure of the gut microbiota. Patients were stratified into higher- and lower-diversity groups at 2 time points: before transplantation and at neutrophil engraftment. The higher-diversity group before transplantation exhibited a higher probability of overall survival (88.9% ± 5.7% standard error [SE] vs 62.7% ± 8.2% SE; P = .011) and lower incidence of grade 2 to 4 and grade 3 to 4 acute graft-versus-host disease (aGVHD). No significant difference in relapse-free survival was observed between the 2 groups (80.0% ± 6.0% SE vs 55.4% ± 10.8% SE; P = .091). The higher-diversity group was characterized by higher relative abundances of potentially health-related microbial families, such as Ruminococcaceae and Oscillospiraceae. In contrast, the lower-diversity group showed an overabundance of Enterococcaceae and Enterobacteriaceae. Network analysis detected short-chain fatty acid producers, such as Blautia, Faecalibacterium, Roseburia, and Bacteroides, as keystones in the higher-diversity group. Enterococcus, Escherichia-Shigella, and Enterobacter were instead the keystones detected in the lower-diversity group. These results indicate that gut microbiota diversity and composition before transplantation correlate with survival and with the likelihood of developing aGVHD.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Adulto , Humanos , Niño , Trasplante de Células Madre Hematopoyéticas/métodos , Trasplante Homólogo , Enfermedad Injerto contra Huésped/microbiología , Probabilidad
7.
Front Nutr ; 10: 1234549, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37794974

RESUMEN

Introduction: The impact of diet on mental well-being and gut microorganisms in humans is well recognized. However, research on the connections between food nutrients, gut microbiota, and mental health remains limited. To address this, the present study aimed to assess the effects of a personalized diet, based on individual needs and aligned with the Mediterranean diet principles, on depression symptoms, quality of life, nutritional intake, and gut microbiota changes among older adults living in the community. Methods: The intervention involved regular visits from a registered dietitian, who provided tailored dietary recommendations. During the 6-month study, participants completed questionnaires to evaluate their depression levels, quality of life, and dietary habits. Additionally, they provided stool samples for analysis of gut microbiota and metabolites. Results: The results demonstrated that the personalized dietary intervention reduced depression symptoms and improved the quality of life among older adults. Furthermore, significant changes in the intake of certain nutrients, such as folate, lutein, zeaxanthin, EPA, and DHA, were observed following the intervention. Moreover, the intervention was associated with increased diversity in the gut microbiome and reduced total short-chain fatty acids, the main metabolites produced by gut microorganisms. The study also revealed correlations between food nutrients, gut microbiota, and mental health parameters. Discussion: In conclusion, this research highlights the potential advantages of personalized dietary interventions in managing depression and enhancing overall well-being among older populations. It also sheds light on the role of gut microbiota and its metabolites in these effects. The findings offer valuable insights into the significance of nutrition and gut health for mental well-being in older adults.

8.
Front Nutr ; 10: 1221685, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37662595

RESUMEN

Background: Vitamin D (Vit D) deficiency (VDD), associated with diverse health conditions, is commonly treated with Vit D3 supplements. However, the gastrointestinal (GI) absorption of Vit D3 in different formulations has not been well studied. Objective: We aimed to compare the absorption of an innovative phospholipids-sucrester matrix biodelivery vehicle-based (sucrosomial®) orodispersible Vit D3 preparation against a reference chewable tablet and soft gel capsule (SGC) Vit D3 formulations in Vit D-deficient healthy adults. Methods: In study 1, 25 subjects were randomized to receive a weekly single dose of 200,000 IU of sucrosomial® Vit D3 (n = 12) or chewable tablet Vit D3 (n = 13) for 3 weeks. In study 2, 20 subjects were randomized to receive a single dose of 200,000 IU every other week of sucrosomial® Vit D3 (n = 10) or SGC Vit D3 (n = 10) for 6 weeks. Circulatory 25-hydroxyvitamin D3 [25(OH)D] levels were reassessed after 2, 3, and 6 weeks in study 1 and after 4 and 6 weeks in study 2. Results: In study 1, after 2 weeks, circulatory 25(OH)D levels increased significantly in both Vit D3 treatment groups (p < 0.0001) but improved markedly in the sucrosomial® Vit D3 group, with no further considerable change after 3 and 6 weeks in both groups. Overall, at all three follow-ups, sucrosomial® Vit D3 treatment achieved significantly higher and sustained 25(OH)D levels (p < 0.001). In study 2, after 4 weeks, both Vit D3 treatment groups showed significant improvement in circulatory 25(OH)D levels (p < 0.0001) but substantially higher in the sucrosomial® group with statistically significant differences between the two treatment groups (p = 0.02). At the 6-week follow-up, only subjects in the sucrosomial® Vit D3 group showed a further increase in circulatory 25(OH)D levels (p = 0.049), but no further significant changes in the levels of the SGC Vit D3 group (p = 0.062), showing a statistically significant difference between the two treatment groups (p = 0.002). The Vit D3 treatment was well tolerated by all participants, and no treatment-emergent effects or serious adverse events were reported. Conclusion: Our results suggest that the sucrosomial® Vit D3 preparation absorbs efficiently in the GI system, achieving adequately higher and sustained circulatory Vit D levels in VDD, and thus can effectively contribute to the body protection against VDD-associated health conditions. Clinical trial registration: clinicaltrials.gov, identifier: NCT05706259.

9.
Front Cell Infect Microbiol ; 13: 1193113, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37680746

RESUMEN

Introduction: Respiratory syncytial virus (RSV) is the most common cause of bronchiolitis and hospitalization in infants worldwide. The nasopharyngeal microbiota has been suggested to play a role in influencing the clinical course of RSV bronchiolitis, and some evidence has been provided regarding oral and gut microbiota. However, most studies have focused on a single timepoint, and none has investigated all three ecosystems at once. Methods: Here, we simultaneously reconstructed the gut, oral and nasopharyngeal microbiota dynamics of 19 infants with RSV bronchiolitis in relation to the duration of hospitalization (more or less than 5 days). Fecal samples, oral swabs, and nasopharyngeal aspirates were collected at three timepoints (emergency room admission, discharge and six-month follow-up) and profiled by 16S rRNA amplicon sequencing. Results: Interestingly, all ecosystems underwent rearrangements over time but with distinct configurations depending on the clinical course of bronchiolitis. In particular, infants hospitalized for longer showed early and persistent signatures of unhealthy microbiota in all ecosystems, i.e., an increased representation of pathobionts and a depletion of typical age-predicted commensals. Discussion: Monitoring infant microbiota during RSV bronchiolitis and promptly reversing any dysbiotic features could be important for prognosis and long-term health.


Asunto(s)
Microbiota , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Humanos , Lactante , ARN Ribosómico 16S/genética , Virus Sincitial Respiratorio Humano/genética , Progresión de la Enfermedad
10.
Int J Mol Sci ; 24(14)2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37511376

RESUMEN

Despite the recent breakthroughs in targeted and immunotherapy for melanoma, the overall survival rate remains low. In recent years, considerable attention has been paid to the gut microbiota and other modifiable patient factors (e.g., diet and body composition), though their role in influencing therapeutic responses has yet to be defined. Here, we characterized a cohort of 31 patients with unresectable IIIC-IV-stage cutaneous melanoma prior to initiation of targeted or first-line immunotherapy via the following methods: (i) fecal microbiome and metabolome via 16S rRNA amplicon sequencing and gas chromatography/mass spectrometry, respectively, and (ii) anthropometry, body composition, nutritional status, physical activity, biochemical parameters, and immunoprofiling. According to our data, patients subsequently classified as responders were obese (i.e., with high body mass index and high levels of total, visceral, subcutaneous, and intramuscular adipose tissue), non-sarcopenic, and enriched in certain fecal taxa (e.g., Phascolarctobacterium) and metabolites (e.g., anethole), which were potentially endowed with immunostimulatory and oncoprotective activities. On the other hand, non-response was associated with increased proportions of Streptococcus, Actinomyces, Veillonella, Dorea, Fusobacterium, higher neutrophil levels (and a higher neutrophil-to-lymphocyte ratio), and higher fecal levels of butyric acid and its esters, which also correlated with decreased survival. This exploratory study provides an integrated list of potential early prognostic biomarkers that could improve the clinical management of patients with advanced melanoma, in particular by guiding the design of adjuvant therapeutic strategies to improve treatment response and support long-term health improvement.


Asunto(s)
Microbioma Gastrointestinal , Melanoma , Neoplasias Cutáneas , Humanos , Microbioma Gastrointestinal/fisiología , Melanoma/terapia , ARN Ribosómico 16S/genética , Neoplasias Cutáneas/terapia , Metaboloma , Heces/microbiología , Composición Corporal
11.
Front Microbiol ; 14: 1108036, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36910169

RESUMEN

Introduction: Wines produced from the same grape cultivars but in different locations possess distinctive qualities leading to different consumer's appreciation, preferences, and thus purchase choices. Here, we explore the possible importance of microbiomes at the soil-plant interface as a determinant of the terroir properties in grapevine production, which confer specific growth performances and wine chemo-sensory properties at the local scale. Methods: In particular, we investigated the variation in microbial communities associated with the roots of Vitis vinifera cultivar Lambrusco, as well as with surrounding bulk soils, in different vineyards across the "Consorzio Tutela Lambrusco DOC" protected designation of origin area (PDO, Emilia Romagna, Italy), considering viticultural sites located both inside and outside the consortium in two different seasons (June and November 2021). Results: According to our findings, rhizospheric and soil microbiomes show significant structural differences in relation to the sampling site, regardless of seasonality, while endophytic microbiomes seem to be completely unaffected by such variables. Furthermore, a deeper insight into the microbial terroir of PDO areas highlighted the presence of some rhizospheric microorganisms enriched inside the consortium and characterizing the PDO regardless of both sampling season and farming strategy. These include Bacillus, Paenibacillus, and Azospirillum, which are all well-known plant growth-promoting bacteria. Discussion: Taken together, our results suggest a connection between soil and root microbiomes of V. vinifera cultivar Lambrusco and the local designation of origin, emphasizing the potential role of PDO-enriched plant growth-promoting bacteria in vine growing and final quality of the Lambrusco DOC wine.

12.
Commun Biol ; 6(1): 36, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36639555

RESUMEN

The gut microbiome (GM) has shown to influence hematopoietic stem cell transplantation (HSCT) outcome. Evidence on levofloxacin (LVX) prophylaxis usefulness before HSCT in pediatric patients is controversial and its impact on GM is poorly characterized. Post-HSCT parenteral nutrition (PN) is oftentimes the first-line nutritional support in the neutropenic phase, despite the emerging benefits of enteral nutrition (EN). In this exploratory work, we used a global-to-local networking approach to obtain a high-resolution longitudinal characterization of the GM in 30 pediatric HSCT patients receiving PN combined with LVX prophylaxis or PN alone or EN alone. By evaluating the network topology, we found that PN, especially preceded by LVX prophylaxis, resulted in a detrimental effect over the GM, with low modularity, poor cohesion, a shift in keystone species and the emergence of modules comprising several pathobionts, such as Klebsiella spp., [Ruminococcus] gnavus, Flavonifractor plautii and Enterococcus faecium. Our pilot findings on LVX prophylaxis and PN-related disruption of GM networks should be considered in patient management, to possibly facilitate prompt recovery/maintenance of a healthy and well-wired GM. However, the impact of LVX prophylaxis and nutritional support on short- to long-term post-HSCT clinical outcomes has yet to be elucidated.


Asunto(s)
Microbioma Gastrointestinal , Trasplante de Células Madre Hematopoyéticas , Humanos , Niño , Levofloxacino/uso terapéutico , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Nutrición Parenteral/métodos , Nutrición Enteral/métodos
13.
Genes (Basel) ; 13(12)2022 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-36553467

RESUMEN

Clostridioides difficile is an obligate anaerobic pathogen among the most common causes of healthcare-associated infections. It poses a global threat due to the clinical outcomes of infection and resistance to antibiotics recommended by international guidelines for its eradication. In particular, C. difficile infection can lead to fulminant colitis associated with shock, hypotension, megacolon, and, in severe cases, death. It is therefore of the utmost urgency to fully characterize this pathogen and better understand its spread, in order to reduce infection rates and improve therapy success. This review aims to provide a state-of-the-art overview of the genetic variation of C. difficile, with particular regard to pathogenic genes and the correlation with clinical issues of its infection. We also summarize the current typing techniques and, based on them, the global distribution of the most common ribotypes. Finally, we discuss genomic surveillance actions and new genetic engineering strategies as future perspectives to make it less difficile.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Humanos , Clostridioides difficile/genética , Clostridioides/genética , Infecciones por Clostridium/epidemiología , Infecciones por Clostridium/genética , Evolución Molecular , Ribotipificación
14.
iScience ; 25(12): 105533, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36419847

RESUMEN

Faecalibacterium prausnitzii is one of the most prevalent and abundant polyphyletic health-promoting components of the human gut microbiome with a propensity for dysbiotic decreases. To better understand its biology in the human gut, we specifically explored the divergence pressures acting on F. prausnitzii clades on a global scale. Five F. prausnitzii clades were de novo identified from 55 publicly available genomes and 92 high-quality metagenome assembled genomes. Divergence rate indices were constructed and validated to compare the divergence rates among the different clades and between each of the diverging genes. For each clade we identified specific patterns of diverging functionalities, probably reflecting different ecological propensities, in term of inter-host dispersion capacity or exploitation of different substrates in the gut environment. Finally, we speculate that these differences may explain, at least in part, the observed differences in the overall divergence rates of F. prausnitzii clades in human populations.

15.
Sci Rep ; 12(1): 16670, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36198901

RESUMEN

Because of their recognized global importance, there is now the urgent need to map diversity and distribution patterns of marine microbial communities. Even if available studies provided some advances in the understanding the biogeographical patterns of marine microbiomes at the global scale, their degree of plasticity at the local scale it is still underexplored, and functional implications still need to be dissected. In this scenario here we provide a synoptical study on the microbiomes of the water column and surface sediments from 19 sites in a 130 km2 area located 13.5 km afar from the coast in the North-Western Adriatic Sea (Italy), providing the finest-scale mapping of marine microbiomes in the Mediterranean Sea. Pelagic and benthic microbiomes in the study area showed sector specific-patterns and distinct assemblage structures, corresponding to specific variations in the microbiome network structure. While maintaining a balanced structure in terms of potential ecosystem services (e.g., hydrocarbon degradation and nutrient cycling), sector-specific patterns of over-abundant modules-and taxa-were defined, with the South sector (the closest to the coast) characterized by microbial groups of terrestrial origins, both in the pelagic and the benthic realms. By the granular assessment of the marine microbiome changes at the local scale, we have been able to describe, to our knowledge at the first time, the integration of terrestrial microorganisms in the marine microbiome networks, as a possible natural process characterizing eutrophic coastal area. This raises the question about the biological threshold for terrestrial microorganisms to be admitted in the marine microbiome networks, without altering the ecological balance.


Asunto(s)
Ecosistema , Microbiota , Hidrocarburos , Italia , Mar Mediterráneo , Agua
16.
Nutrients ; 14(14)2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35889831

RESUMEN

The core microbiome, which refers to a set of consistent microbial features across populations, is of major interest in microbiome research and has been addressed by numerous studies. Understanding the core microbiome can help identify elements that lead to dysbiosis, and lead to treatments for microbiome-related health states. However, defining the core microbiome is a complex task at several levels. In this review, we consider the current state of core human microbiome research. We consider the knowledge that has been gained, the factors limiting our ability to achieve a reliable description of the core human microbiome, and the fields most likely to improve that ability. DNA sequencing technologies and the methods for analyzing metagenomics and amplicon data will most likely facilitate higher accuracy and resolution in describing the microbiome. However, more effort should be invested in characterizing the microbiome's interactions with its human host, including the immune system and nutrition. Other components of this holobiontic system should also be emphasized, such as fungi, protists, lower eukaryotes, viruses, and phages. Most importantly, a collaborative effort of experts in microbiology, nutrition, immunology, medicine, systems biology, bioinformatics, and machine learning is probably required to identify the traits of the core human microbiome.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Disbiosis , Humanos , Metagenómica/métodos , Análisis de Secuencia de ADN
17.
Biomolecules ; 12(7)2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35883431

RESUMEN

Nutraceuticals have been receiving increasing attention in the last few years due to their potential role as adjuvants against non-communicable chronic diseases (cardiovascular disease, diabetes, cancer, etc.). However, a limited number of studies have been performed to evaluate the bioavailability of such compounds, and it is generally reported that a substantial elevation of their plasma concentration can only be achieved when they are consumed at pharmacological levels. Even so, positive effects have been reported associated with an average dietary consumption of several nutraceutical classes, meaning that the primary compound might not be solely responsible for all the biological effects. The in vivo activities of such biomolecules might be carried out by metabolites derived from gut microbiota fermentative transformation. This review discusses the structure and properties of phenolic nutraceuticals (i.e., polyphenols and tannins) and the putative role of the human gut microbiota in influencing the beneficial effects of such compounds.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Suplementos Dietéticos , Humanos , Polifenoles/metabolismo , Polifenoles/farmacología , Polifenoles/uso terapéutico , Taninos/farmacología
18.
Genes (Basel) ; 14(1)2022 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-36672796

RESUMEN

Anticancer treatments have shown a variable therapeutic outcome that may be partly attributable to the activity of the gut microbiota on the pathology and/or therapies. In recent years, microbiota-drug interactions have been extensively investigated, but most of the underlying molecular mechanisms still remain unclear. In this review, we discuss the relationship between the gut microbiota and some of the most commonly used drugs in oncological diseases. Different strategies for manipulating the gut microbiota layout (i.e., prebiotics, probiotics, antibiotics, and fecal microbiota transplantation) are then explored in order to optimize clinical outcomes in cancer patients. Anticancer technologies that exploit tumor-associated bacteria to target tumors and biotransform drugs are also briefly discussed. In the field of pharmacomicrobiomics, multi-omics strategies coupled with machine and deep learning are urgently needed to bring to light the interaction among gut microbiota, drugs, and host for the development of truly personalized precision therapies.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Neoplasias , Probióticos , Humanos , Probióticos/uso terapéutico , Prebióticos , Neoplasias/tratamiento farmacológico
19.
World J Gastroenterol ; 27(41): 7041-7064, 2021 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-34887627

RESUMEN

The human gut microbiome has gained increasing attention over the past two decades. Several findings have shown that this complex and dynamic microbial ecosystem can contribute to the maintenance of host health or, when subject to imbalances, to the pathogenesis of various enteric and non-enteric diseases. This scoping review summarizes the current knowledge on how the gut microbiota and microbially-derived compounds affect host metabolism, especially in the context of obesity and related disorders. Examples of microbiome-based targeted intervention strategies that aim to restore and maintain an eubiotic layout are then discussed. Adjuvant therapeutic interventions to alleviate obesity and associated comorbidities are traditionally based on diet modulation and the supplementation of prebiotics, probiotics and synbiotics. However, these approaches have shown only moderate ability to induce sustained changes in the gut microbial ecosystem, making the development of innovative and tailored microbiome-based intervention strategies of utmost importance in clinical practice. In this regard, the administration of next-generation probiotics and engineered microbiomes has shown promising results, together with more radical intervention strategies based on the replacement of the dysbiotic ecosystem by means of fecal microbiota transplantation from healthy donors or with the introduction of synthetic communities specifically designed to achieve the desired therapeutic outcome. Finally, we provide a perspective for future translational investigations through the implementation of bioinformatics approaches, including machine and deep learning, to predict health risks and therapeutic outcomes.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Simbióticos , Disbiosis , Humanos , Prebióticos
20.
Cancers (Basel) ; 13(16)2021 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-34439153

RESUMEN

Epithelial ovarian cancer (EOC) is one of the most lethal and silent gynecological tumors. Despite appropriate surgery and chemotherapy, relapse occurs in over half of patients with a poor prognosis. Recently, the gut microbiota (GM) was hypothesized to influence the efficacy of anticancer therapies, but no data are available in EOC. Here, by 16S rRNA gene sequencing and inferred metagenomics, we profiled the GM of EOC patients at diagnosis and reconstructed its trajectory along the course of neoadjuvant or adjuvant chemotherapy up to follow-up. Compared to healthy subjects, the GM of EOC patients appeared unbalanced and severely affected by chemotherapy. Strikingly, discriminating patterns were identified in relation to the therapeutic response. Platinum-resistant patients showed a marked temporal reduction in GM diversity and increased instability with loss of health-associated taxa and increased proportions of Coriobacteriaceae and Bifidobacterium. Notably, most of these microorganisms are lactate producers, suggesting increased lactate production as supported by inferred metagenomics. In contrast, the GM of platinum-sensitive patients appeared overall more diverse and stable and enriched in lactate utilizers from the Veillonellaceae family. In conclusion, we identified potential GM signatures of therapeutic outcome in EOC patients, which could open up new opportunities for cancer prognosis and treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...